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DEFINITION AND CLINICAL DESCRIPTION

SIgAD

SIgAD, using 0´05 g/l of serum IgA as the upper limit for diagnosis

in adults and a concomitant lack of secretory IgA, is the most

common form of primary immunode®ciency (PID) in the western

world and affects approximately 1/600 individuals [1]. However,

there is a marked variability in the prevalence in different ethnic

groups [2], with a lower frequency in Japanese (1/18 000) and

Chinese (1/4000), suggesting a genetic basis for the disorder. The

term `selective IgAD' should be reserved for those individuals who

do not have identi®able disorders which are known to be associated

with low IgA levels (see below). However, in many cases a

simultaneous change in the IgG subclass pattern is seen with a

lack of speci®c anti-polysaccharide antibodies of the IgG2 subclass

[3] or a total lack of serum IgG2 [4], IgG4 and IgE [5], re¯ecting a

relative or absolute block in switching to genes downstream of the

G1.

CVID

CVID affects about 1/25 000 Caucasians, the patients having a

marked reduction in serum levels of both IgG (usually < 3 g/l)

and IgA (< 0´05 g/l); IgM is also reduced in about half the

patients (< 0´3 g/l) [1]. Symptoms of recurring infection can

start at any time of life, but there are peaks of onset during 1±5

and 16±20 years of age [6], with equal distribution between the

sexes. The condition is clinically more complex than X-linked

agammaglobulinaemia (XLA), with patients being prone to

chronic in¯ammatory and autoimmune complications [6,7].

INHERITANCE OF SIgAD AND CVID

Familial inheritance of either SIgAD or CVID occurs in about 20%

of cases (Fig. 1). A different population prevalence in various

ethnic groups, strong familial clustering of the disorder, a pre-

dominant inheritance pattern in multiple-case families compatible

with autosomal dominant transmission, and a high relative risk for

siblings suggest the involvement of thus far unidenti®ed genetic

factors in the pathogenesis of IgAD/CVID [8,9]. In multiple-case

families with a dominant transmission of CVID/IgAD, CVID

was usually present in the parents accompanied by IgAD in

descendants [9]. This is consistent with the hypothesis that CVID

may develop later in life as a more severe manifestation of a

common, complex genetic defect, most likely involving immuno-

globulin class switching. This is supported by a description of a

gradual decline of IgG levels that progressed at similar ages in

affected siblings [10]. Furthermore, CVID may develop from IgAD

[11±13] and occasionally vice versa [14]. In both diseases anti-IgA

antibodies have been detected. Since the disease phenotype is persistent

and the phenocopy rate is low, chromosome susceptibility loci under-

lying this complex trait should be detectable by genetic linkage

analysis. The recurrence risk of IgAD was found to depend on the

gender of parents transmitting the defect: affected mothers are more

likely to pass the defect on to their offspring than affected fathers. This

was accompanied by a preferential transmission of associated alleles in

the MHC, suggesting a role for this region in the parent-of-origin

penetrance differences [9]. The role of the MHC is further supported by

a higher prevalence of anti-IgA antibodies among females transmitting

the disease to their offspring than in female non-transmitters.

MOLECULAR BASIS

Our recent study involving a large number of multiple-case

families supported the presence of a predisposing locus in the

class II or class III region [9]. A signi®cant increase in sharing of

MHC alleles in affected members of our family dataset was

consistent with previous allelic associations observed in case

control studies, which appear to be much stronger for IgAD than

CVID. It is possible that the gene(s) involved predispose to the

production of IgA antibodies.

A number of abnormalities in the cytokine network have been

observed in SIgAD and CVID; however, attempts to ®nd a defect

in candidate cytokine genes have so far failed, including the

available coding region of the cytokine genes in the MHC, such

as lymphotoxin a and b (Vorechovsky et al., unpublished). Using

the same family material, we were unable to con®rm a suscep-

tibility locus on chromosome 18, despite a number of anecdotal

reports of patients with gross defects in the 18p region and SIgAD

[15]. The ®nding of immunoglobulin de®ciency in only one of two

monozygotic twins suggests an environmental, possibly infectious

agent as a triggering factor, but longer follow up of these twins is

needed [16].

In SIgAD the defect is manifested at the stem cell level, since a

bone marrow transplant from an IgA-de®cient donor transfers the

defect to the recipient [17], whereas bone marrow from a normal

Clin Exp Immunol 2000; 120:225±231

225q 2000 Blackwell Science

Correspondence: David Webster, MRC Immunode®ciency Research

Group, Department of Clinical Immunology, Royal Free Hospital School of

Medicine, Pond St, London NW3 2QG, UK.



individual transplanted into an SIgAD patient will correct the

defect [18]. The genes for a1 and a2 can readily be demonstrated

in the genome of IgAD patients [19] and these `silent' genes can be

re-expressed in the children of SIgAD parents [20], suggesting that

the defect is due to a defect in switching or expression of the

immunoglobulin genes. This is supported by the production of IgA

in vitro by lymphocytes from both SIgAD [21] and CVID [22]

patients when cultivated together with anti-CD40 antibodies and

IL-10. The physiology of this in vitro system is questionable, but it

clearly demonstrates that secretion of IgG1, IgG3, IgG4 [23] and

IgA [21,24], with a biased expression of IgA1, can occur if

appropriate stimuli are added. Although it is technically dif®cult

to detect the normally small numbers of circulating IgA-bearing B

cells, they have been found in SIgAD [25]. Furthermore, T cells

from SIgAD patients will support IgA production in vitro by B

cells from normal subjects. In a few selected cases the defect is

restricted to one of the two IgA subclasses and this is most often,

although not invariably [26], due to deletions of the corresponding

heavy chain constant region gene [27].

The mechanism of CVID is equally elusive, one problem being

that the syndrome probably includes a number of different dis-

orders [28]. At least 30% of patients are lymphopenic, the CD4�

subset being mainly depressed, and this probably accounts for the

low levels of IL-2 produced in vitro from stimulated peripheral

blood mononuclear cells (PBMC) [29]. The expression of CD40

ligand on activated T cells is usually normal, but is very low in a

small group of patients, implying a defect in isotype switching

[30]. The B cells from another small subgroup have defective

signalling through the CD40 pathway [31]; these patients have

raised serum IgM and may be misdiagnosed as XHIM. Levy et al.

[32] recently demonstrated somatic hypomutation in B cells from

two patients; subsequent work indicates that this occurs in about

20% of patients, but cannot yet be linked to any clinical pattern

(Y. Levy, personal communication). Since hypermutation occurs

predominantly within the germinal centres (Gcs) of the central

lymphoid apparatus, the defect may re¯ect the fact that splenic

Gcs are often poorly developed or disrupted by granulomatous

in®ltrates in these patients [33]. Another possibility is that inher-

ited subtle defects in DNA repair, which could impair hypermuta-

tion, may contribute to an already compromised B cell maturation

system. This is supported by the ®nding of increased chromosomal

sensitivity to radiation damage in lymphocytes from some CVID

patients [34], and clinical surveys showing an increased suscept-

ibility to some cancers [35]. IgAD, and sometimes a more broader

immunoglobulin de®ciency, is associated with ataxia telangi-

ectasia and the Nijmegen breakage syndrome, both conditions

caused by inherited defects in DNA repair [36].

The majority of patients have a defect in CD4� T cell priming

to antigen, as measured by the numbers of circulating responsive

cells following immunization [37]. This could be due to a defect in

antigen-presenting cells (APC), and not T cells, since various

defects in APC have been reported [38]. There may be a small

subgroup of patients with defects in CD3 complex triggering, but

this needs to be con®rmed [39].

The majority of patients show a pattern of raised production of

interferon-gamma by circulating T cells, particularly by the CD8�
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Fig. 1. Three pedigrees are shown demonstrating the inheritance patterns for IgAD and CVID. Note that in some families there are relatives

with minor IgG abnormalities.



subset, increased numbers of DR-expressing CD4� T cells with up-

regulated Fas expression, and an increased rate of apoptosis

[40,41]. There is increased chronic `activation' of circulating

monocytes producing reactive oxygen [42], and IL-12 after

in vitro lipopolysaccharide (LPS) stimulation (Cambronero et al.,

unpublished). This suggests a `pathological' shift towards a Th1

type of immune response. Tumour necrosis factor (TNF) produc-

tion from both T cells and monocytes is raised in a subgroup of

patients with granulomas [43], probably due to the coincidental

inheritance of TNF-a (high) genetic polymorphisms [44]. These

abnormalities appear speci®c to CVID and are not seen in patients

with XLA, who have the same therapy and suffer from the same

infections.

The recovery of antibody production following HIV infection

in CVID patients is important [45]. There have been three

published case reports, with a fourth patient currently in

our (D.W.'s) clinic with familial CVID, having survived 5 years

without immunoglobulin therapy; highly active anti-retroviral

therapy (HAART) has now reduced the HIV load to unrecordable

levels. Only IgG and IgM antibody production recovered in three

of the patients, the IgA remaining unrecordable. These cases

demonstrate that CVID is potentially reversible by immuno-

regulatory factors, and supports the view that SIgAD predisposes

to CVID.

ANIMAL MODELS

Although there are a number of reports on IgA-de®cient dogs

[46±48] and chickens [49], the molecular basis of these de®-

ciencies has not been elucidated. There is no rodent model

available yet which resembles the human disease, although

knock-out mice with a deleted J chain [50] or Ia region [51]

have been described. Only secretory IgA is impaired in the

former and serum levels of IgA are up to 30-fold higher than in

normal wild-type mice. There seems to be J chain-independent

IgA transport in the intestinal, mammary and respiratory epi-

thelial cells of these mice [52], adding to the complexity of the

`secretory' IgA machinery. The mice with an Ia region deletion,

contrary to what was expected based on mice with deleted I

regions or I region promoters for g1, g2b and e, produced

normal levels of IgA. This suggests that the I region as such is

redundant and can be replaced by other gene sequences [53] and

that splicing of germ-line transcripts rather than transcription

itself controls DNA rearrangement leading to class switching.

Mice with a targeted deletion of the a gene and its associated

switch region [54±56] not only lack IgA but also have low

serum levels of IgG3 and IgE, but raised levels of IgM and

IgG2b, to some extent mimicking the situation in IgAD patients.

Targeted disruption of the IL-5 receptor a gene in mice leads to

a reduction in the number of IgA-producing cells at mucosal

effector sites such as intestinal lamina propria and nasal mucosa,

but normal numbers at inductive sites. Furthermore, serum levels

of IgA were normal [57]. Targeted deletions of either the lympho-

toxin a [58,59] or lymphotoxin b [59] gene cause reduced serum

and secreted IgA with disrupted development of secondary lym-

phoid organs and a diminished capacity for af®nity maturation of

the antibodies produced. This has some parallels with a subgroup

of CVID patients [32]. Transcription factor knockouts, such as the

NF-kB, p65 [60] or p50 Rel-A [61] de®cient mice, have defective

class switching and could be a model for a subgroup of IgAD/

CVID patients [62,63]. Other `knockouts' for various critical

immunoregulatory proteins in mice have major general effects

on the immune system, but the phenotypes are not consistent with

CVID.

DIFFERENTIAL DIAGNOSIS AND DIAGNOSTIC

TESTS

The diagnosis is one of exclusion [64]. The family history and the

age of onset of symptoms is important, because patients presenting

after 15 years are unlikely to have one of the known single gene

PIDs such as XLA or X-linked hyper IgM syndrome (X-HIM).

There is a typical pattern of immunoglobulin class de®ciency, with

very low IgA and IgE and variable but usually low IgM. A chest

radiograph is necessary to exclude thymoma in patients presenting

over 45 years; these patients may only have moderate hypo-

immunoglobulinaemia despite having no circulating B cells. This

appears to be a distinct entity, with a much worse prognosis than

CVID [65]. There is usually no confusion with secondary hypo-

immunoglobulinaemia, in which IgA levels are usually only

moderately low. Nevertheless, routine screening for nephrotic

syndrome, chronic lymphatic leukaemia and myeloma should not

be forgotten. Protein losing enteropathy with low immunoglobu-

lins can be confusing, but is usually obvious when the serum IgG

fails to rise on immunoglobulin therapy.

IgAD has been associated with a variety of anti-rheumatic and

anti-epileptic drugs [66] (Table 1). In about half the cases the

de®ciency is apparently reversible after cessation of therapy,

although full recovery may take months or even years. IgAD

was induced by multiple anti-rheumatic drugs in a patient with

rheumatoid arthritis [67], suggesting that selected individuals may

be genetically predisposed to develop this complication. On the

other hand, different drugs with a common molecular mechanism

of action (ACE inhibitors) may actually vary in their capacity to

induce IgAD in a given patient [68].

CVID and IgG2-IgA de®ciency can also be induced by some

of the above drugs [66], and recently zonisamide, a new anti-

convulsant [69], was added to the list. The presence of drug-

associated pan-hypo-immunoglobulinaemia, IgAD with IgG2
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Table 1. Pattern of drug-induced immunoglobulin de®ciencies

Drug CVID IgG2-IgAD IgAD

Sulfasalazine X X X

Gold X

Chloroquine X

Penicillamine X

Captopril X

Fenclofenac X

Hydantoin X X X

Zonisamide X

Carbamazepine X X

Valproate X

Thyroxin* X

Levamisole* X

Ibuprofen* X

Salicylic acid* X

Cyclosporin A* X

*Requires independent con®rmation.

See [2,67,68,93,94].



subclass de®ciency and selective IgAD suggests that it shares

features with the primary forms of SIgAD/CVID and that the

pathophysiological process may involve common key steps. There

is no common molecular denominator for the drugs used, although

a majority appear to act at the level of lysosomes or are lysosomo-

tropic, suggesting that the pathway leading to IgAD involves this

organelle and APC. Some of the drugs implicated contain a highly

reactive sulphydryl group and it is possible that the immunological

dysregulation induced by these agents, including the formation of

immune complexes and induction of autoimmune phenomena [70],

plays a role in the development of the immunode®ciency in

genetically susceptible patients. Sulfasalazine, one of the anti-

rheumatic drugs implicated in immunoglobulin de®ciency, pre-

vents NF-kB-dependent transcription through inhibition of IkBa

degradation [71]. This suggests that this form of IgAD/CVID may

be associated with a defect in transcription either of constant region

genes or of the switching process.

Various single gene disorders causing hypo-immunoglobulinae-

mia should be excluded, including `leaky' severe combined immu-

node®ciency, which can rarely present after childhood [72]. A

detailed family history is required. Male patients with low numbers

of circulating B cells should be screened for XLA [73], and other

autosomal recessive causes of agammaglobulinaemia considered in

females [74]. Male patients with X-HIM or X-linked lymphoproli-

ferative syndrome (XLPS) may be confused with CVID, particularly

since the former may have normal serum IgM levels [75].

CLINICAL MANAGEMENT

SIgAD

Most individuals with SIgAD are not prone to infection, and are

diagnosed during routine tests for other conditions or following

family screening of a proband with SIgAD/CVID. There is no

consensus on whether they should be routinely screened for anti-

IgA antibodies, partly because there is no agreement on what level

of antibodies constitutes a risk of anaphylaxis to blood products. A

minority are prone to infection, and these should be screened for

additional IgG subclass or functional IgG defects (i.e. response to

test immunization); however, IgG subclass levels correlate poorly

with susceptibility to infection [76]. Most patients can be managed

with prophylactic or periodic antibiotics, but a few may bene®t

from immunoglobulin therapy, regardless of whether an associated

IgG functional defect can be demonstrated [77]. Such patients will

require immunoglobulin products containing low or minimal IgA

if they have high levels of IgA antibodies.

CVID

Respiratory tract. Nearly all patients have recurrent symptoms

of bronchitis, and to a lesser extent sinusitis, usually due to non-

encapsulated Haemophilus in¯uenzae, although streptococci,

Moraxella catarrhalis and mycoplasmas are also important patho-

gens [78±80]. Until the late 1970s, most patients developed and

eventually died from bronchiectasis. Many CVID patients continue

to suffer from recurrent bronchitis despite IVIG therapy, and need

prophylactic antibiotics to prevent bronchiectasis. Some clinicians

favour rotating regimes, but in our experience compliance is poor

and breakthrough infection is common. Prophylactic quinolone

antibiotics, which have a very low minimum inhibitory concentra-

tion (MIC) for H. in¯uenzae, are a better alternative, with amoxy-

cillin for `breakthrough' resistant streptococcal infection (Webster

et al., unpublished).

Other infections. About 5% of CVID patients develop myco-

plasma infections in the urinary tract and joints, occasionally with

systemic spread and deep abscesses [81]. Although most patients

respond to doxycyline, they should be referred urgently to a specialist

centre where the organism can be characterized and appropriate

antibiotics given. There is a promising new pleuromutilin antibiotic

under trial for those with resistant organisms (Heilman and

Webster, unpublished).

Enteroviral infection of the central nervous system is a rare

complication, but can present either acutely or insidiously with

signs of encephalitis, seizures, headache, sensory motor distur-

bances and even personality changes [82]. Cerebrospinal ¯uid

(CSF) should be obtained, but may not grow the virus, particularly

if the patient is on IVIG therapy. Polymerase chain reaction (PCR)

for enterovirus should be requested routinely [83], and if positive

patients should be offered a trial of pleconaril, a new anti-

enteroviral drug which appears to have been effective in an open

trial (Rotbart and Webster, unpublished).

Granulomas are a special feature of CVID, and do not occur in

other primary lymphocyte disorders. In the lungs they can mimic

sarcoidosis [84]. Granulomatous in®ltration of the spleen occurs in

about 20% of patients, and often extends to the liver causing

presinusoidal venous congestion with oesophageal varices, some-

times progressing to cirrhosis and liver failure requiring liver

transplantation [85]. Steroids can usually control the lung disease

but new strategies are needed for liver involvement.

In¯ammatory bowel disease is common, with about 30% of

patients having some degree of chronic diarrhoea. Although the

colon is preferentially involved, the histology showing lympho-

cytic mucosal in®ltration [86], about 10% of patients have a

severe gastroenteropathy involving the small and large bowel,

with malabsorption, and occasionally ®brotic ileal strictures. The

mucosal in¯ammation often involves the stomach, and a small

number of patients develop achlorhydria and pernicious anaemia

[87]. This probably explains the apparently raised incidence of

carcinoma of the stomach in CVID patients [35], although this is

now a very rare complication in the UK and Sweden. Although

regular immunoglobulin therapy reduces the susceptibility to

giardia and campylobacter enteritis, it does not prevent the unex-

plained mucosal in¯ammation; treatment for the latter is currently

unsatisfactory and in severe cases involves trying antibiotics,

elemental diets and steroids [86].

Autoimmune disease occurs in about 10% of patients,

usually immune thrombocytopenia (ITP), haemolytic anaemia

or neutropenia. Much rarer complications are red cell aplasia,

thyroid disease and neuropathy. Steroids may be useful but in

refractory cases high dose IVIG, splenectomy or more aggres-

sive immunosuppressive therapy may be needed [88]. There is a

raised incidence of lymphoma [89], which is now more common

as patients survive longer. Unexplained fever, weight loss,

recent lymphadenopathy and abdominal or chest pain should

prompt a search for clonally derived lymphocytes in the blood,

followed by lymph node biopsy, and if necessary a diagnostic

splenectomy.

Immunoglobulin therapy. Nearly all CVID patients require

immunoglobulin replacement therapy, given either 2±4 weekly

at a total dose of 400 mg/kg body weight monthly, or as a

subcutaneous injection (using an infusion pump) every 1±2

weeks [90,91]. Unfortunately, CVID patients with hepatitis C

have a very poor prognosis [92], and most who were infected by

contaminated immunoglobulin in the 1980s have died; nowadays
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only products known to be subjected to formal viral inactivation

should be used.

USEFUL CONTACTS

Various European registries, and subregistries, under the auspices

of the European Society for Immunode®ciency (ESID), are listed

below, together with the contact person for assistance. Also listed

are international nursing and patient support groups, which can

advise on speci®c country based groups.

ESID registries

Main CVID/IgAD registry L Hammarstrom, M Abedi

Lennart.Hammarstrom@csb.ki.se

Website: http://www.cbt.ki.se/esidregistry/intro.html

Subregistry for (i) Mycoplasma infection

C. Heilmann (carsten_heilmann@online.pol.dk) and

D. Webster (dwebster@rfhsm.ac.uk)

(ii) Enteroviral infection

D. Webster (see above)

International

International Nursing Group for Immunode®ciences (INGID)

Ann Gardulf, Sweden, Fax:� 468 58586850

International Patients Organization for Primary Immunode®ciency

(IPOPI): pimmune@dial.pipex.com
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